

Performance Monitoring and Evaluation of Mini Grids- A case study of Tsumkwe and Gam

Presentation by Ms. Wilhelmina Kamati
AEDU Annual Conference
14 March 2024

PRESENTATION OUTLINE

Preface

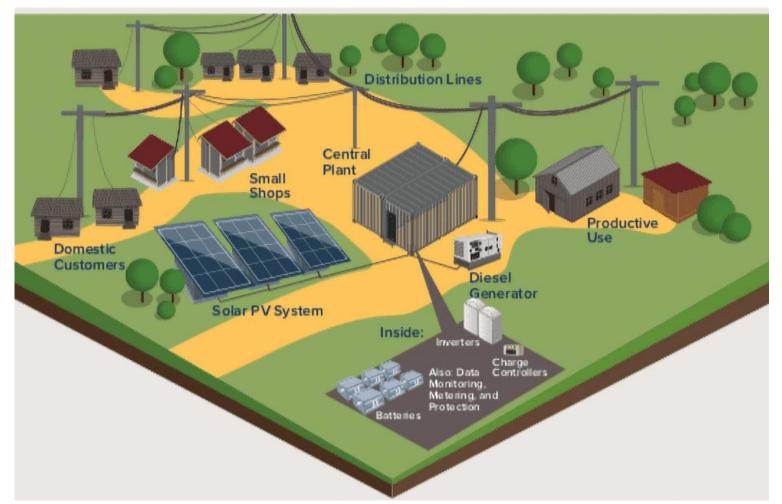
Sites overview

Operation regime

Performance Monitoring and Evaluation

Conclusion

PREFACE


What is Mini Grid?

- A mini-grid refers to a localized electricity distribution network that operates independently from the national transmission grid.
- It involves one or more small-scale electricity generation units or micro-sources, such as photovoltaic (PV), generators, and energy storage systems (batteries).
- They supply electricity to a diverse range of customers, including households, businesses and semi industrial facilities at grid quality level.

PREFACE cont...

MINI GRID STRUCTURE

SITES OVERVIEW

Battery Room

Tsumkwe Plant

Gam Plant

SITES OVERVIEW cont...

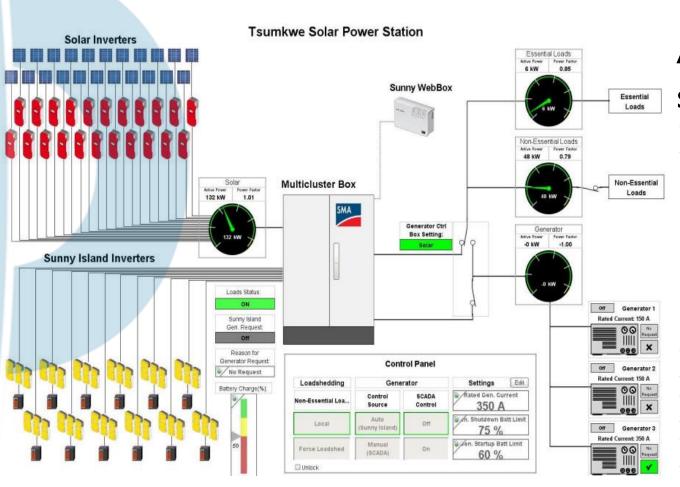
TSUMKWE:

- Solar/Diesel Hybrid System
- > 300 kWp, made up of 1302 panels rated @ 230W
- > 3 MWh Battery Storage
- > 300 kVA Scania Genset
- 2 x Step-Up transformers (160 and 315 kVA)
- ➤ 16 Distribution transformers of varying sizes

Serving: 405 Household, II Institutions & 46 Businesses

SITES OVERVIEW cont...

GAM:


- Solar/Diesel Hybrid System
- > 292 kWp, made up of 2016 panels rated @140W each
- > 2.6 MWh Battery Storage
- > 300 kVA Marelli Gensets
- 2 x Step-Up transformers (100 and 315 kVA)
- > 10 Distribution transformers of varying sizes

Serving: 639 Households, 5 Institutions & 32 Businesses

OPERATION REGIME

Areas of commonalities for both sites:

- Two loads classifications: Essential (i.e. hospital, police, communication towers) and Non-essential loads (i.e. domestic).
- Automated charging
- Backup Diesel Generator
- Distribution network at II kV

PERFORMANCE MONITORING AND EVALUATION

Performance
Monitoring: Is crucial
for Mini Grids to
ensure their efficient
operation and
sustainability.

Performance
Evaluation: For
Financial
Investment,
Operation and
Asset optimization

Outcome: CENORED can improve demand forecasting, understand energy needs, optimize operations, and maintain customer service levels.

Monitoring and Evaluating aspects:

- Environmental, Health, and Safety monitoring: Visual site inspections, Quality testing, Community feedback mechanism
- Technical monitoring: Automated data collection, manual data collection, comparisons and baselines
- Financial monitoring: Budget tracking, cost-effectiveness analysis, cash flow management

PERFORMANCE MONITORING

cont...

Automated
Data Recording
Instruments

Energy System Energy Management Systems: This system automatically collect data on energy production, consumption, and system health

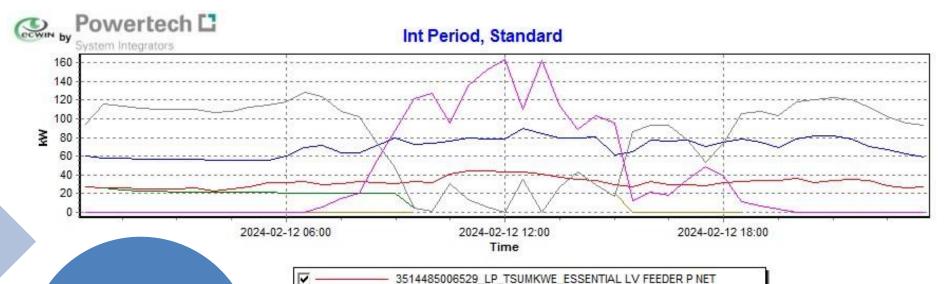
Smart Metering Smart Meters: They record electricity usage data and can communicate this information for remote monitoring

String Inverters

Inverters: Have inbuilt capabilities to track performance and energy output

PERFOTMANCE MONITORING

cont...


CENORED uses software platforms for data analysis:

ECWIN-Silk software: To analyze data from ELSTER smart meters

ACE Vision: To analyze data from Itron smart meters

PERFORMANCE MONITORING

cont...
Data Analysis:

3514485006651 GLBR TSUMKWE BATTERY BANKS PENET

3514485006677 LP TSUMKWE NON - ESSENTIAL LV FEEDER P NET

3514881066119_LP_TSUMKWE_SOLAR PLANT PV MAIN CHECK P NET

351488106607_LP_TSUMKWE_GENERATOR MAIN FEEDER P NET

3514485006651 GI LP TSUMKWE BATTERY BANKS PINET

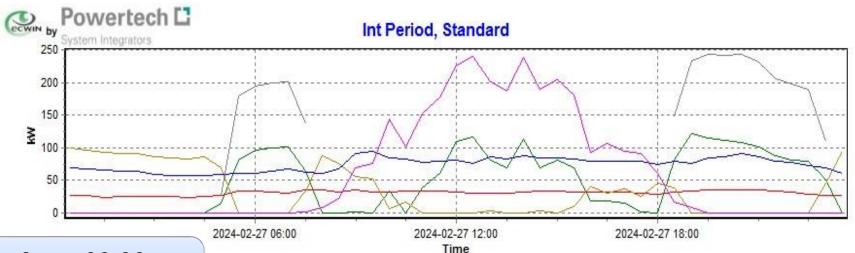
Generator
was never
switched off.
Generator
started idling,
at Solar peak.

Batteries were barely charged.

Generation:

Solar production is 163.47kW From the generator is 128.40kW From the batteries is 20.32 kW

Diesel: 621L - N\$12 202.65


- Why are the batteries not fully charged?
- Human factor
- High diesel cost

System load
Essential and Non-Essential is 134.04kW
Batteries charging at 25.70kW

PERFORMANCE MONITORING

cont...

Data Analysis:

On this day, the batteries ran from 00:00 to 05:00. A great performance

During morning peak, the generator ran for 3 hours and evening peak

There was also good production from the solar.

System loads:

Essential and Non-Essential is 124.20kW Batteries charging at 130.72kW.

<u> </u>	3514485006529_LP_TSUMKWE_ESSENTIAL LV FEEDER P NET
<u> </u>	3514485006651_GI_BR_TSUMKWE_BATTERY BANKS PE NET
V	3514485006651_GI_LP_TSUMKWE_BATTERY BANKS PINET
V	3514485006677_LP_TSUMKWE_NON - ESSENTIAL LV FEEDER P NET
V	351488106607_LP_TSUMKWE_GENERATOR MAIN FEEDER P NET
V	3514881066119_LP_TSUMKWE_SOLAR PLANT PV MAIN CHECK P NET

Generation:

Solar production is 239.23kW. From the generator is 243.28kW. From the batteries is 100.16 kW

Diesel: 400L - N\$ 7860

Saved: N\$ 4342.65 ~ N\$ 130 279.50/month

Conclusion

Legacy system:

- System Design and Capacity Limits
- Integration with SCADA Software
- Manual Operation regime
- High diesel usage by the Generator
- Utilities need to invest in the right monitoring Technology
- Remote operation can reduce overheads
- Training on monitoring systems and operations

Thank you for your participation